

The place where Girt gets stuck on the rod is 1 rod-length (obviously, right?) due east of the pole on which the rod pivots.

There are flowers at each of the locations A-Z listed below. The positions are specified in relation to the post on which the rod pivots. Which ones can Girt get to, assuming she remains stuck to the tip of the rod (and that she is unable to stretch away from the rod's tip by more than $1000^{\text {th }}$ of a rod length)?

A	1	rod	E	1/2	rod	N
B	$3 / 4$	rod	W	4/5	rod	S
C	0.3420	rod	E	0.7232	rod	N
D	0.5403	rod	E	0.8415	rod	N
E	$\sqrt{2} / 3$	rod	E	$\sqrt{7} / 3$	rod	S
F	$\sqrt{2} / 3$	rod	W	$\sqrt{3} / 3$	rod	N
G	$\sqrt{15} / 4$	rod	W	$1 / 4$	rod	S
H	$\sqrt{0} / 2$	rod	E	$\sqrt{4} / 2$	rod	N
1	$\sqrt{3} / 2$	rod	E	$\sqrt{2} / 2$	rod	N
J	1.1220	rod	W	0.6431	rod	N
K	$5 / 13$	rod	E	12/13	rod	S
L	4/3	rod	E	5/3	rod	N
M	0.9900	rod	W	0.1411	rod	N
N	1	rod	W	0	rod	N
0	4/5	rod	W	$3 / 5$	rod	S
P	$\sqrt{1} / 2$	rod	E	$\sqrt{3} / 2$	rod	N
Q	0.4161	rod	w	0.9093	rod	N
R	$\sqrt{4} / 3$	rod	E	$\sqrt{5} / 3$	rod	S
S	0.5807	rod	E	0.6207	rod	N
T	0.2837	rod	E	0.9589	rod	S
U	$\sqrt{3} / 2$	rod	E	$1 / 2$	rod	N
V	$\sqrt{14} / 4$	rod	W	$\sqrt{2} / 4$	rod	S
w	1	rod	W	1	rod	N
X	$\sqrt{2} / 2$	rod	E	$\sqrt{2} / 2$	rod	N
Y	$\sqrt{5} / 5$	rod	W	$2 / \sqrt{5}$	rod	S
Z	0.7071	rod	w	0.8660	rod	N

For each flower that Girt can reach, determine how far she would have to travel from her starting point to reach it.

